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Abstract.

) This paper focuses )n algorithms for matching problems that run on an EREW PRAM with p

processors. Given is a bipartite graph with n vertices, m, edges, and integral edge costs at most N in

magnitude.-An algorithm is presented for the assignment problem (minimum cost perfect bipartite

matng) that runs in O(V/'mlog(nN)(logp)fp) time and 0(m) space, for p < m/(V/'1log 2 n).

>This bound is within a factor of log p of optimum speed-up of the best known sequential algorithm,

which in turn is within a factor of log (nN) of the best known bound for the problem without costs

(maximum cardinality matching). Extensions of the algorithm are given, including an algorithm for

maximum cardinality bipartite matching with slightly better processor bounds, and similar results

for bipartite degree-constrained subgraph problems (with and without costs).
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1. Introduction.

Problems such as cardinality matching, degree-constrained subgraphs and network flow have

effcient sequential algorithms [LT] but seem difficult to parallelize, in the sense of NC parallelism

(e.g., [GSS]). This paper investigates parallel algorithms from the more practical viewpoint of

speeding up the best known sequential time bounds. It achieves running times that are within a

logarithmic factor of optimum speed-up, using significant numbers of processors.

To state the results we first give some definitions and notation; more definitions are at the end

of this section. A matching on a graph is a set of vertex-disjoint edges. A free vertex is not on

any matched edge. A maximum cardinality matching has the greatest number of edges possible; a

perfect matching has no free vertices. When every edge has a numerical cost, the cost of a set of

edge. is the sum of its edge costs. A minimu.- perfect matching is a perfect matching of smallest

possible cost. The assignment problem is to find a minimum perfect matching on a bipartite graph.

This problem has many practical applications [Dan].

A PRAM (Parallel Random Access Machine) consists of p synchronized processors accessing a

common memory. On % EREW (Exclusive Read Exclusive Write) PRAM, at most one processor

can access a given memory cell in any instruction cycle. If a sequential algorithm runs in time 1,

an optimum speed-up of this algorithm on a PRAM with p processors runs in time O(t/p).

We state resource bounds in terms of the following parameters: The given graph has n vertices,

m edges, and integral edge costs at most N in magnitude. The model of computation is an EREW

PRAM with p processors.

Let us first review the best known sequential algorithms for bipartite matching problems. For

maximum cardinality matching the algorithm of Hopcroft and Karp runs in time 0(./'nm) IHK].

For the assignment problem the best known strongly polynomial time bound is O(n(m + n log n)),

achieved by the Hungarian algorithm implemented with Fibonacci heaps [FT]. When the costs are

integers of magnitude at most N and N is not huge, this can be improved: [GaT87] gives a cost

scaling algorithm that runs in time O(v/nmlog(nN)). This bound is within a logarithmic factor

of Hopcroft and Karp's bound for the simpler problem of cardinality matching.

Our main result extends this bound to parallel computation:

Theorem 1.1. For integral costs of magnitude at most N, the assignment problem can be solved

in time 0(J'nmlog(nN)(logp)Ip) and space 0(m), for p < m/(.,flog 2 n).

For p = 1 this bound equals that of [GaT87], although the latter algorithm is simpler. For
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1 <p _< m/(V,,ilog 2 n) our algorithm speeds up the sequential algorithm by the almost optimum

factor of p/logp. This gives a non-trivial speed-up even for very sparse graphs, e.g., graphs with

m = 0(n). Using the greatest number of processors allowed, Theorem 1.1 gives a running time of

0(n log 3n log (nN)).

Now let us review previous parallel algorithms for matching and related problems. [KUW].

[GP] and (MVV] give parallel algorithms for minimum cost matching that work even on general

graphs. These algorithms are probabilistic, however, and use large numbers of processors. (The

time is O( log 2 n) with nmNM(n) processors for [MVV]; slightly fewer processors and slightly more

time for [KUW] and [GP]. Here M(n) 2_ n2 is the sequential time needed to multiply two n x n

matrices. The space for these algorithms is also large since it equals the processor count). Our

work is related to the algorithm of Goldberg and Tarjan for the more general minimum cost flow

problem (GoT]. A parallel version of their algorithm runs in 0(n 2 (logn)(lognN)) time using n

processors and 0(n 2 ) space.

Our assignment algorithm can be used to solve the "single-source shortest path problem on

a directed graph with arbitrary edge lengths, in the bounds of Theorem 1.1. The assignment

algorithm generalizes to the minimum cost degree-constrained subgraph problem. The result is

similar to Theorem 1.1: all n's in the bounds of Theorem 1.1 change to U, the sum of the degree

constraints. These results achieve close to optimum speed-up of sequential algorithms in (GaT87]

for the same problems.

The basic problem addressed by our work is finding paths fast in parallel. Efficient transitive

closure algorithms use too many processors for optimum speed-up. Our solution involves extending

the notion of c-optimaiity of [GoTj (and the equivalent notion of 1-optimality of [GaT871) to r-

optimality, a form more suited to parallel computation. We also we use the idea of a reduced graph

and a path doubling technique to ensure that all paths explored are short on the average.

Our approach to the assignment problem simplifies when applied to the problem of finding a

maximum cardinality matching on a bipartite graph, giving slightly better processor bounds:

Theorem 1.2. A maximum cardinality matching on a bipartite graph can be found in time

0((v'umlogp)/p) and space 0(m), for p 5 m/(Vnlogn).

This bound is within a factor of log p of an optimum speed-up of the best sequential algorithm
[HK]. Using the greatest number of processors allowed, the running time is 0(nlog2 n).

Shiloach and Vishkin [SV] give a parallel algorithm for cardinality matching. They achieve

almost optimum speed-up but for fewer processors, p : m/n (fastest running time 0(n " s log n)).
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The algorithm of [KC] has a faster running time of O(n log n log log n), a factor of log n/log log n

better than our fastest time. But transitive closure is used, whence the number of processors (and

the space) is M(n). The above-mentioned algorithms of [KUW], [GP] and [MVVJ are more efficient

for cardinality matching but still not close to optimum in their use of processors (p = nM(n) for

[KUW, GP], p = nmM(n) for [MVV]).

Our cardinality matching algorithm generalizes to the maximum cardinality degTee-constrained

subgraph problem. For instance on a bipartite graph the time is O((n 2/ 3m log p)/p) forp < r/n 5/ 6 .

This improves Shiloach and Vishkin's bound of O((nm log n)/p) time for p 5 rn/n [SV].

The rest of this paper is organized as foilows. Section 2 presents our algorithm for maximum

cardinality bipartite matching, and along with some extensions. This illustrates our approach in a

simple setting. Section 3 is devoted to the assignment problem. Section 4 discusses the extensions

to the shortest path problem and the minimum cost degree-constrained subgraph problem. This

section closes with definitions from graph theory.

The logarithm function log n is to the baze two; logi- denotes the i"A power of log n. It

is convenient to take log 1 to be one. We use the following convention to sum the values of

a function: If f is a real-valued function defined on elements and S is a set of elements, then

f(S) = E{f(s)Js E $}.

The given graph has vertex set V and edge set E. In general for a graph G, V(G) and E(G)

denote its vertex set and edge set, respectively. We use the notation v E G (vw E G) as a shorthand

for v E V(G) (vw E E(G)) when no confusion can arise. If H is a subgraph, an H-edge is an edge

in H and a non-H-edge is not in H. If the given graph is bipartite we denote the bipartition as V0,

V1. Hence any edge joins V to V1i; if e is an edge, e0 denotes its vertex in V and similarly for el.

For a subgraph H, Vo(H) and V(H) have the obvious meaning. In problems with edge costs, c(e)

denotes the cost of edge e. By our convention for functional notation, c(S) denotes the total cost

of a set of edges S.

An it-path is a path from vertex a to vertex t; two at-paths are vertex disjoint if their only

common vertices are a and t. A directed graph is layered if V(G) can be partitioned into sets

Wi, i = 0,...,k, such that any edge goes from some Wi to Wi+i.

In a graph with a matching M, an alternating path (cycle) is a s;mple path (cycle) whose edges

are alternately matched and unmatched. An augmenting path P is an alternating path joining two

distinct free vertices. Augmenting along P means enlarging the matching to M E P, a matching

with one more edge.

If M is a matching on a bipartite graph G, the residual graph for M (a term from network flow
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theory [T]) is a directed graph L£ that models the augmenting paths. The vertices of D are those

in V(G) plus two new vertices s and t; the edges of D ae the unmatched edges of G, directed from

Vo to V; plus the matched edges of G, directed oppositely; plus edges from s to each free vertex

of V; plus edges from each free vertex of V to t. Augmenting paths for M correspond one-to-one

with st-paths in D.

Consider a multigraph in which each vertex v has associated nonnegative integers 1(v) and

u(v). Let D be a subgraph, and let d(v) denote the degree of vertex v in D (each copy of an edge

incident to v contributes one to d(v)). A degree-constrained subgraph (DCS) is a subgraph in which

each v has 1(v) < d(v) S u(v). In a perfect DCS each v has d(v) = u(v). The number of edges in

a perfect DCS is denoted by U = u(Vo). A vertex is free in D if d(v) < u(v). Other definitions for

DCS- e.g., minimum perfect DCS, the residual graph, etc., follow by analogy -;,ith matching.

2. Maximum cardinality matching.

This section introduces our approach in the simple setting of cardinality problems. It discusses

the problem of maximum cardinality bipartite matching, proving Thecrem 1.2. This illustrates two

main ingredients of our algorithms: efficient breadth-first search techniques and the reduced graph.

The section begins by stating the cardinality matching algorithm of Hopcroft and Karp (HKI. Then

it gives an efficient parallel implementation. The section ends with extensions of our algorithm to

the maximum cardinality degree-constrained subgraph problem.

Let G be a bipartite graph. Consider an arbitrary matching M on G, with residual graph D

(defined in Section 1). The level 1(v) of a vertex v is the length of a shortest sv-path in D (1(v) is

infinite if there is no sv-path). The level graph (for M) consists of all directed edges vw that have

1(w) = t(v) + 1 (with both levels finite). The following algorithm of Hopcroft and Karp finds a

maximum cardinality matching on G

procedure match.

Initialize the matching M to 0. Then repeat the following steps until the Search Step halts with

the desired matching.

Search Step. Construct the level graph for M by doing a breadth-first search on the residual

graph D, starting from vertex s. If 1(t) is infinite in D, halt with the desired matching M.
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Augment Step. Find a maximal set A of vertex-disjoint st-paths in the level graph. Then for

each path P E A, augment the matching along P. 1

Two quantities are used to analyze the various matching algorithms in this paper:

I = the number of iterations of the loop of match;

A = the total length of all augmenting paths found by match.

For the Hopcroft-Karp algorithm I = O(V-) [HK] and A = O(nlogn) [ET]. Now we show that,

on an EREW PRAM with p processors (1 < p < m), match can be implemented in time

O((Im/p + A) log p). (2.1)

We start with the data structure for graphs that is used throughout this paper. The given

graph G is represented by sequentially-stored adjacency lists. More precisely, let I(v) denote the

set of edges incident to a vertex v. For each vertex v, the edges of 1(v) are stored in consecutive

locations; v has pointers to the first and last edges of I(v), and all lists I(v) are stored in 0(m)

consecutive locations. The two copies of any edge are liiked to each other. Both copies of an

edge have 0(1) fields for working storage (determined by the algorithm). In particular these fields

contain the links for all lists of edges used by the algorithm. This data structure can be constructed

by one processor in time O(m + n), given any reasonable input representation of G; this suffles

for our purposes.

This data structure facilitates scanning a set of edges in parallel. For example, the next p edges

incident to a vertex v can be scanned concurrently, processor i scanning the edge i locations after

the current position in 1(v). An algorithm for breadth-first search can be based on this principle.

It finds the first L levels of a breadth-first search starting from any given set of vertices in time

O((m/p + L)logp). (2.2)

This fact may be viewed as an application of Brent's principle [B], since it is obvious that each level

of a breadth-first search can be done in 0(1) time, assuming m processors and ignoring processor

allocation problems. We will assume this breadth-first search routine for now. We sketch an

implementation below.

The Search Step is implemented with the breadth-first search routine. Each search stops when

vertex t is reached, or when there are no more vertices to scan. (The latter is true in the last

iteration, since 1(t) is infinite.)
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The Search Steps use total time (2.1). To see this note that there are I Search Steps, so the

first terms of (2.2) for all breadth-first searches sum to 0((Im/p)logp). In all searches except the

last, the total number of levels L searched is less than A, by the stopping criterion of the Search

Step. The last search explores O(A) levels, since the search paths are alternating. So the second'

terms of (2.2) sum to O(Alogp). This gives the desired time bound.

The Augment Step is implemented to avoid backtracking, using the following idea. Consider a

directed acyclic graph D with distinguished vertices s and t. The reduction R of D is the maximal

subgraph of D such that every vertex except t has positive outdegree (in R). Clearly any st-path

of D is in R. Further, an st-path in R can be found by a greedy strategy: start at s and repeatedly

traverse an edge zy directed from the most recently reached vertex z. The Augment Step uses the

reduction graph, as follows.

For a subgraph J1, the notation 1_ (E) stands for V(H) - {s, t}.

The Augment Step finds st-paths one-by-one, adding successive paths to A. Let L be the level

graph. The Augment Step maintains the reduction R of the graph L - V (A). (It does this by

marking the vertices that are in R.) It finds the next st-path P using the above greedy strategy:

Starting with the above most recently reached vertex x, to find the next edge xy the processors

repeatedly examine the next p edges directed from z, to find an edge directed to a vertex y of R.

Using this approach the time to find all st-paths in the entire match algorithm is given by (2.1)

(the term 0((Im/p) log p) accounts for the time examining a group of p edges that do not lead to

a vertex in R).

After an st-path P is found, the vertices V (P) are deleted from R. Then R is updated so that

each vertex has positive outdegree. This is essentially a breadth-first search backwards from the

level of t to the level of s. The search uses Cole's algorithm to sort p numbers in time O( logp) (to

kemp track of outdegrees when edges are deleted) JC]. A breadth-first search that deletes p edges

uses time O((p/p + L)logp). Since the preceding st-path has length L, the time for updating R

over the entire algorithm is given by (2.1).

We finish the discussion of Theorem 1.2 by sketching the parallel breadth-first search routine.

(This routine and its data structures are used throughout the paper.) First observe that it is easy

to do a breadth-first search of G, from a given set of vertices S, in time O(n log p + m/p). The idea

is that a parallel prefix computation broadcasts the next vertex v to scan; the processors scan the

edges incident to v in parallel, each processor building up a "vertex list" of vertices on the next

level.

A slightly more involved procedure achieves time (2.2). The search works in L stages (for L
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the desired number of levels). For I = 0,..., L - 1, the h stage scans all vertices on level t and

places all newly reached vertices on level I + 1. Define

n,= Z{IjI(v)jI vertex v iz on level t).

Stage I uses time O((] + (me + mrt+)/p)logp) time. (Clearly this gives bound (2.2)).

There are two data structures: each processor i has two linked lists, a scan list S(i) and a

vertex list V(i). The scan lists contain the edges to be scanned in the &' stage and the vertex lists

contain the vertices on level I + 1. More precisely, the scan lists partition the edges incident to

vertices on level t. Each scan list specifies at most rmt/pl such edges. An entry on a scan list is a

triple (v,j, k), which corresponds to the j" through kh edges (inclusive) in the incident list 1(v).

A vertex list is a list of at most rrnt/pl vertices on level t + 1.

Stage I works in two parts. The first part scans the edges incident to level I. Processor i scans

the edges on S(i). It adds newly reached vertices w to its vertex list V(i). Sorting and parallel

prefix computations are used to coordinate the manipulations of vertices w. Cole's algorithm is

used to sort p numbers in time O(logp) [C].

The second part of stage I uses the vertex lists to construct scan lists for stage t + 1. This is

done in two steps. Step 1 is a parallel prefix computation that calculates several quantities including

me+i. In Step 2, each processor i constructs one or more triples for each vertex v E V(i); the triples

specify how 1(v) will be partitioned among scan lists. The construction uses the fact that scan

list boundaries occur every fme+i/p1 edges. Since any processor examines at most rme/pl vertices

and [rm+i/pl boundaries, the time is as desired.

This completes the proof of Theorem 1.2.

Now consider the problem of finding a maximum cardinality degree-constrained subgraph. Our

implementation of the Hopcroft-Karp algorithm easily generalizes to this problem. (We omit the

details here. Section 4.2 addresses the main issues, in the i., tet f LIhei, v. -!'A case.)

Corollary 2.1. Consider a bipartite multigraph, where all edge multiplicities are at most M

(M = 1 for a graph). A maximum cardinality degree-constrained subgraph can be found in time

O(min{V"U, n 2/ 3 M'/ 3}m/p + min{U log U, nV-M-U}) logp) and space 0(m).

Proof. The time is expression (2.1), using the bounds on I and A given in [ET,FM, GaT87]. I
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3. The assignment problem.

This section presents our parallel algorithm for the problem of finding a minimum perfect

matching in a bipartite graph, proving Theorem 1.1. For convenience we assume the given graph

G has a perfect matching. (The algorithms of Section 4.2 handle other versions of the weighted

matching problem.) Also for convenience, in this section n denotes IVo, which is half the number

of vertices. We present the algorithm in a top-down fashion. Section 3.1 introduces r-optimal

matchings and gives the basic routines of the algorithm. The two major subroutines are in Sections

3.2 and 3.3.

3.1. The basic algorithm: i-optimality.

Most algorithms for weighted matching, including ours, use the linear programming dual vari-

ables [Dan]. A dual function is a function y : V ---, Z (for Z the set of integers); y(v) is called the

dual variable of vertex v. Our notational convention for functions (see Section 1) implies the fol-

lowing notation: For an edge e, y(e) = y(eo) + y(el) (since precisely speaking, e = {eo,el)).

Similarly if S is a set of edges, y(S) = E{y(e)le E S}. Observe that if M is a matching,

y(M) = E"f{y(v)I vertex v is matched in M}.

The Hungarian algorithm and other traditional approaches to weighted matching are based on

the complementry slackness condition for minimum perfect matching [L]: A perfect matching V

has minimum cost if and only if there is a dual function such that for any edge e, y(e) :_ c(e), with

equality holding for any e E M. We call such a dual function an (optirnutm) linear programming

dual.

Our approarh uses a modification of linear programming duals. An r-feasible matching consists

of a matching AA,, nonnegative integer r, and dual function y such that

y(e) < c(e) + (if e E M then 0 else 1), e E E; (3.1a)

c(M) :_ y(M) + r. (3. 1b)

An r-optimal (relaxed-optimal) matching is a perfect matching that is r-feasible.

To motivate this definition, first observe that dropping the if term from (3.1a) and setting

r = 0 gives the linear programming duals. Now put back the if term but keep r = 0. This

notion is 1-optimality, used in [GaT87] to design an efficient sequential algorithm for minimum
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perfect matching. The intuition is that the if term makes the cost of augmenting paths reflect

their length (each unmatched edge contributes . to the path length, and an extra 1 to the path

cost; in the -- iext of scaling the extra 1 is significant, since costs are small). Because of this

the alg'r" ..,m tends to augment along paths of short length, as in the Hopcroft-Karp cardinality

matching algorithm. 1-optimality is similar to the notion of E-optimal flows in the minimum cost

flow algorithm of [GoT]. The parallel algorithm presented here achieves the same asymptotic time

as [GaT87] when it runs on one processor.

The notion of 1-optimality does not seem to lead to an efficient parallel algorithm. 1-optimality

guarantees a low bound on the total length of all augmenting paths, but some augmenting paths

can still be long. This implies that an algorithm must explore long candidate augmenting paths,

which seems hard to do efficiently in parallel. We use r-optimality to overcome this difficulty:

r-optimality guarantees a low bound on the total length of all augmenting paths (Lemma 3.5) and

also gives the algorithm the flexibility to invalidate long candidate augmenting paths.

We now develop the properties of r-optimaii.y, and at the same time state the basic algorithm.

We start with the relation between r-optimal matchings and minimum perfect matchings; similar

results are in [GoT], [GaT87].

Lemma 3.1. If some integer largor than r + n divides each cost c(e) evenly, then any r-optimal

matching is a minimum perfect matching.

Proof. Consider a perfect matching P. It suffices to show that c(M) _< c(P) + r + n, since c(M)

and c(P) are both multiples of the integer hypothesized in the lemma. From (3.1b), c(M) < y(V)+r:

from (3.1a), y(V) < c(P) + n. Combining these gives the desired irequality. I

The algorithm is stated using three integer paramn-ters,

r, b = 3r + 5n, g.

The value of these parameters is chosen in Section 3.2 (specifically we choose r,b = G(n), g =

G()logn); r is the parameter for r-optimality).

The main routine of the algorithm scales the costs. It first computes a new cost F(e) for each

edge e, equal to r + n + 1 times the given cost. Consider each E(e) to be a signed binary number

±blb2 .. .bk of k = Llog(r+ n+ 1)NJ + 1 bits. The routine maintains a variable c(e) for each edge

e, equal to its cost in the current scale. The routine initializes each c(e) to 0 and each y(v) to 0.

Then it executes the following loop for index s going from 1 to k:

9



Double Step. For each edge e, c(e) -- 2c(e) + (signed bit b. of Z(e)). For each vertex v,

y(v) - 2y(v) - 1.

Match Step. Call the scale-match routine to find an r-optimal matching for costs c(e). |

Lemma 3.1 shows that the main routine halts with a minimum perfect matching. Each iteration

of the loop is called a scale. Clearly the total time is O(log ((r + n)N)) times the time for one

scale. Note that the entire algorithm runs in the desired time bound if each scale runs in time

0((Vnm/p + nlog 2n)logp). (3.2)

This follows since as noted above we will choose r = O(n). The time for the Double Step is O(m/p).

The scale-match routine transforms costs so that they are small integers. (This is for conceptual

convnience.) It changes the cost of each edge e to c(e) - y(e); then it calls the match routine on

these costs to find an r-optimal matching M with duals y'; then it constructs the new dual function

y + &/, where y is the dual function before the call to match. The time for these transformations is

O(m/p+ logp) (a parallel prefix computation is used to broadcast dual values y(v); each processor

uses at most two duals that another processor uses).

Clearly when scale-match terminates, M with the new duals is an r-optimal matching for cost

function c. Furthermore, the costs that scale-match inputs to match have these properties:

(a) The costs are integers -1 or larger.

(b) There is a perfect matching of cost at most 2r + 3n.

Property (a) follows from the fact that the Double Step changes costs and duals so that each edge

e has !,(e) - 1 < c(e). Next we show that M, the r-optimal matching found in the previous scale,

satisfies property (b) ((b) is obvious in the first scale). For any edge e E M, let p(e) be the value

c(e) - y(e) from the previous scale. After the Double Step, 2p(e) + 3 > c(e) - y(e). Hence e costs

at most 2p(e) - 3 in the costs for match. The conclusion for M follows.

In the match routine, an edge e is eligible if it is matched or constraint (3.1a) holds with

equality. The match routine augments the matching along paths of eligible edges. (To motivate

this, think of (3.1a) as placing a lower bound on c(e). Then an unmatched eligible edge has smallest

cost possible, and so using it in an augmenting path is desirable.) If there is no augmenting path

of eligible edges, match adjusts the duals to create one. More precisely match works as follows.

procedure match.
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Initialize all duals y(v) to 0 and matching M to I. Then repeat the following steps until the

Augment Step halts with the desired r-optimal matching.

Augment Step. Find a maximal set A of vertex-disjoint augmenting paths of eligible edges. For

each path P E A, augment the matching along P, and for each vertex w E V(P), decrease y(w)

by 1. If the nev, .- iatching M is perfect, halt.

Search Step. Do a Relaxed Hungarian Search (see below) to adjust the duals, maintaining r-

feasibil~y, and create an augmenting path of eligible edges. I

To analyze match, we must first give some details of the Search and Augment Steps (the

Search Step is described completel, in Section 3.2, the Augment Step is in Section 3.3). The

Relaxed Hungarian Search is a modification cf the Hungarian search done in bipartite matching

(the latter is essentially Dijkstra's shortest path algorithm [L,TJ). The Relaxed Hungarian Search

changes dual valuos in two ways: dual adjustments, which are also done in the ordinary Hungarian

search, and relax operations, which are new. Each dual adjistment calculates a positive integer b

and increases or decreases various dval values by 6, so as to preserve r-feasibility and eventually

create an augmenting p,.h of eligible edges. A relax operation does not create any eligible edges.

At any point in match define

f = the number of free vertices in Vo;

A = the sum of all dual .justment quantities 6 in all Hungarian searches so far.

(A is defined with respect to the current execution of match.) The duals are maintained so that

any free vertex v has

y(v) = if v E V then A else 0. (3.3)

Now we analyze match. First observe that it is correct, specifically: (i) it maintains r-feasibility,

and (ii) it halts with M an r-optimal matching. Property (i) holds after the initialization (by

property (a) of the costs for match). It is part of the specification of the Relaxed Hungarian

Search. Hence we need only consider an Augment Step. It decreases duals so that y(e) = c(e)

for every newly matched edge e. This implies that (3.1a) holds. It also implies (3.1b) (since every

previously matched edge satisfied y(e) <_ c(e)). Now consider property (ii). If M is not perfect but

G has a perfect matching, the Search Step creates an augmenting path of eligible edges. Hence (ii)

eventually holds. (If G does not have a perfect matching, this is eventually detected in the Search

Step.)
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The efficiency analysis starts with a fact similar to the key result in the analysis of the Hopcroft-

Karp algorithm.

Lemma 3.2. At any time during match, fA < b.

Proof. At any point in match let M be the current matching, and let M" be a minimum perfect

matching. Consider the expression

Y = y(M") - y(M).

M' D M consists of alternating cycles plus exactly f augmenting paths. Hence

Y = y({v~v is free in M) = fA, by (3.3). On the other hand (3.1) implies Y < c(M')+n-c(M)+

r. Properties (a)-(b) of the costs for match imply that the last expression is at most 3r + 5n = b. I

Define the quantities I and A as in Section 2. In the definition of A, measure the length of an

alternating path by the number of unmatched edges. For 1 < i < n define

Ai = the value of A during the ith augmentation.

(The ith augmentation is when match augments along the jth augmenting path.) These quantities

are bounded as follows.

Lemma3.3. I<2VA+1.

Proof. First we show that a Hungarian search S increases A by at least one. It suffices to show

that S does a dual adjustment (since any dual adjustment quantity 6 is a positive integer). Seaxch

S does a dual adjustment unless, when it starts, there is an augmenting path P of eligible edges.

Clearly P intersects some augmenting path of A of the preceding Augment Step. It is easy to see

that P contains an unmatched edge e, such that el but not e0 is in an augmenting path of A. But

e is ineligible after the Augment Step decreases y(el). Thus P does not exist, and S does a dual

adjustment.

This implies that at most VbA Search Step.; end with A < VA. If a Search Step ends with

A > VbA then f < VA by Lemma 3.2. There can be at most f more iterations, since each Augment

Step enl;rges the matching. I
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Lemma 3.4. E A, _ b + blogn.

Proof. Since f = n-i+1 right before the ih augmentation, Lemma 3.2 implies Ai _< b/(n-i+ 1).
U

Lemma3.5. A<n+b+blogn.

Proof. Let Pi be the path used in the i h augmentation. Let I, be its length, measured as the

number of unmatched edges; let Mi be the matching after augmenting along Pi. (Note that M0 -

and c(Mo) = 0.) Using (3.3), the definition of "eligible", and (3.1a),

Ai = y(P, - M,- 1 ) - y(P n Mi- 1 ) 2_ i + c(Mi) - c(Mi-i).

Summing these inequalities implies = A, _ A - n (by property (a), c(Mn) _ -n). Now Lemma

3.4 implies the desired bound. I

3.2. Relaxed Hungarian Search.

This section first describes ordinary Hungarian search, modified to accommodate the concepts

of our paper - eligible edges and r-feasiblity. This version of Hungarian Search is what is needed

in an efficient one-processor algorithm. The remainder of the section describes Relaxed Hungarian

Search and presents its analysis.

Ordinary Hungarian search has two main components, the search forest F and the dual ad-

justment operation. Recall that the purpose of a Hungarian search is to create an augmenting path

of eligible edges, by adjusting the duals in a way that preserves r-feasibility. The augmenting path

is found by growing a forest F. The roots of Y are the free vertices of V; any path from a vertex

to a root in Y is an alternating path of eligible edges. Hence when Y contains a free vertex of V

it contains the desired augmenting path.

If a maximal forest Y does not contain an augmenting path, a dual adjustment can be done.

Define the dual adjustment quantity

b = min{c(e) + I - y(e)JeoEY, el 7).
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Each v E F has its dual y(v) increased by 6x (if v E Vo then 1 else -1). This adjustment

preserves r-feasibility, since it does not change y(e) when e has both vertices in F. Furthermore,

any edge e achieving the above minimum becomes eligible, and can be added to F.

The Hungarian search alternates between growing -F and doing dual adjustments. Specifically,

7 is grown until it is maximal: An eligible edge e with co E F and el V 7 is added to " whenever

possible; if el is not free, its matched edge ele' is also added to F. If the maximal X does not

contain an augmenting path, a dual adjustment is done. Then the process repeats. Eventually

7 contains the desired augmenting path of eligible edges, at which point the ordinary Hungarian

search halts.

The ordinary Hungarian search is adequate for p = I (it is used in the one-processor algorithm

of [GaT87]). It is not efficient for our approach to parallel processing, however, for the following

reason. As illustrated in Section 2, our approach charges search time to augmenting path length.

But ordinary Hungarian search leads to two circumstances where search time can be much longer

than augmenting path length: First, a search might grow a forest F with long paths, yet after

dual adjustments, find a short augmenting path. Second, when the search halts there may be long

alternating paths of eligible edges that the Augment Step must explore, yet these paths may not

lead to any augmentations.

The Relaxed Hungarian Search remedies this using the relax operation. To relax a set of

matched vertices S C V means to decrease y(v) by 1 for each v E S. The relax operation makes

every unmatched edge incident to S ineligible. Concerning r-feasibility, note that a relax operation

preserves (3.1a). It decreases y(M) by 15, so (3.1b) places a limit on relax operations.

Relax operations can be used to overcome the above two difficulties, as follows. First the

algorithm can limit the time to grow F: If a parallel step adds just a small number of vertices to

F, the algorithm relaxes those vertices, preserving (3.1b), yet cutting off the growth of F. Second,

after the parallel Hungarian search finds an augmenting path, there may still be eligible edges to

add to F. The algorithm continues to add vertices to 7 in parallel, until some parallel step adds

just a small number of vertices. At that point the algorithm relaxes those vertices, cutting off

further growth as desired. We shall see that these two remedies lead to an efficient algorithm.

Before presenting the algorithm in detail note that the following modification of the relax

operation might be more efficient in practice: decrease y(v) only if v E S is incident to an unmatched

eligible edge. Our analysis applies without change to this modification. For definiteness, the rest

of the paper assumes that the simpler relax operation given above is used.

Now we describe Relaxed Hungarian Search. The search initializes the search forest F to

14



contain the free vertices of V0 . Then it repeats the following two steps until the Adjust Step halts

with Y as desired. (Recall that f denotes the number of free vertices in Vo and g is a parameter of

the algorithm.)

Adjust Step. Set W1 +- {eil some eligible edge e has eo E Y, el 0 F}, Wo - {eolei E WI, e E

M}. If W = 0 and Y contains a free vertex of 1I, halt. If W, = 0 and F does not contain a free

vertex of V, do a dual adjustment and repeat this step.

Grow Step. For each vertex w E W1 , add an eligible edge vw (v E F) to F, and if w is not free,

add the matched edge ww' to F. If IWoI < f/g then relax Wo. I

Let us clarify the flow of control in this algorithm. First consider the Adjust Step. A dual

adjustment in this step is well-defined, since it is done only when F does not contain a free vertex

of VI. A dual adjustment ensures that the next Adjust Step has W, $ 0; hence the Adjust Step

repeats at most once.

Next consider the Grow Step. After it adds edges, the eligible edges L joining a vertex of Vo(F')

to a vertex not in Y are all incident to Wo. If IWoI 1_ f/g, the next Adjust Step and Grow Step

process these edges L (if L $ 0). If IWoI < f/g the relax operation makes the edges L ineligible;

hence the next Adjust Step either halts or does a dual adjustment.

We define two more quantities for the analysis:

R = the total decrease in duals caused by relax operations;

H = the total number of iterations in all Hungarian searches.

Here an iteration is defined as an execution of an Adjust Step plus the following Grow Step (if

it exists). Both quantities are defined with respect to the current execution of match. We shall

choose the parameter r to be an upper bound on R.

The correctness of the Relaxed Hungarian Search amounts to these properties: (i) it preserves

(3.3); (ii) it preserves r-feasibility; (iii) it eventually halts having created an augmenting path of

eligible edges.

For (i), the dual of a free vertex v changes only in a dual adjustment. If v E Vo then every

dual adjustment increases y(v), so y(v) = A. If v E V then no dual adjustment changes y(v), so

Y(v) = 0.

Property (ii) was essentially verified in the above discussion. For (3.1b), we have observed that

a dual adjustment does not change y(M); an Augment Step does not increase c(M) - y(M). Relax

operations decrease y(M). Hence our choice of r will guarantee r-feasibility.
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For (iii), as already noted an Adjust Step repeats at most once. Then a Grow Step with

W1 0 0 is executed. Hence every iteration of Adjust and Grow enlarges F. Thus the routine

eventually halts. When it halts, . contains a free vertex of V1. Hence F contains an augmenting

path of eligible edges. (Note that relax operations do not destroy the eligibility of edges in F.)

We establish two other properties that are needed by the Augment Step (Section 3.3). The

first is that " contains all vertices that are on an augmenting path of eligible edges. This follows

since the search halts with W1 = 0.

For the second property, first recall that the Augment Step of the cardinality matching algo-

rithm relies on the fact that the level graph is layered. In minimum cost matching the graph of

eligible edges is not layered. This makes the Augment Step more difficult. The eligible edges have

the following weaker property (similar to [GoT] for network flow).

Lemma 3.6. In match there is never an alternating cycle of eligible edges.

Proof. We proceed by contradiction. Suppose there is an alternating cycle of eligible edges C. C

does not exist after the initialization of match, since there are no matched edges.

C is not created in a Relaxed Hungarian Search, for the following reasons: A relax operation

does not create an eligible edge, so it does not create C. A dual adjustment does create eligible

edges e M, where e0 E 7, el V F. If C contains such an edge, it also contains an edge f V M

with fo 0 7, f E F. But f is ineligible after the dual adjustment.

Similar reasoning applies when the Augment Step creates new matched edges and changes

duals. I

Now we analyze the efficiency of the Relaxed Hungarian Search.

Lemma 3.7. H = O(b-+gnlogn).

Proof. There are three possibilities for an iteration: (i) It adds at least f/g vertices to Vo(Y).

(ii) It is the last or next-to-last iteration in its Hungarian search. (iii) The next iteration does a
dual adjustment. These possibilities are exhaustive since if (i) does not hold and the Adjust Step

does not halt, the Grow Step does a relax operation, making W1 = 0 in the next iteration.

Possibility (ii) occurs O(VA) times by Lemma 3.3. Postibility (iii) occurs at most b times,

since Lemma 3.2 implies that the number of dual adjustments is at most b. Possibility (i) dearly

occurs at most gn/f times in a given search. Each Hungari n search has a distinct value of f,
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since each Augment Step after the first does at least one augment. Thus (i) occurs less than

=1 gnIf = O(gnlogn) times, as desired. I

Lemma 3.8. R < (4blogn)/g.

Proof. Consider a Search Step that starts with f free vertices, whose dual adjustment quantities

b sum to some value d. The relax operations cause a total decrease in duals of at most 2f d/g. To

see this, observe that a relax operation that is not the last is followed by a dual adjustment. Hence

there are at most d + 1 relax operations, that decrease duals by at most (d + 1)f/g < 2df/g.

Thus R < E 2fd/g, where the summation is over all Hungarian searches. Observe that Z fd

(summation over all Hungarian searches) is precisely F"i=l Ai. This follows since the duals of free

vertices are changed only by dual adjustments. Now Lemma 3.4 implies the desired bound. |

The lemma and the definition of b imply that r can be chosen to be any value satisfying the

inequality r > 4(3r + 5n)log n/g. Hence choose

r=2n, b=lln, g=24flogn1.

This implies that the number of scales is O( log (nN)), and

I= O(V),A = O(nlogn), H= O(nlog2n).

In the timing analysis we have assumed that all arithmetic operations use 0(1) time. To justify

this we show that each dual y(v) hai magnitude O(n2 N). Since the input requires a word size of

at least max{ log N, log n} bits, the dual variables can be stored in at worst triple-word integers.

To show this first define Y, as the largest magnitude of a dual value y(v), v E V0, during

the sth scale. match increases y(v) by at most A < b, and decreases it by at most r < b. Thus

Y. < 2Y, + b - 1, and Y0 = 0. Hence Y, _< (21 - 1)(b - 1) = O(n2 N). Hence the duals ,f Vo satisfy

the desired bound. When match changes the dual of a vertex v E V1, it preserves the relation

y(vv') = c(tw'), for vv' E M. So the duals of V satisfy the desired bound.

It remains to describe the parallel implementation of the Relaxed Hungarian Search. It can

be implemented so that the total time for all searches is

0((Im/p + b + H)logp) (3.4)

which is within the desired bound (3.2). Here we outline the ideas of the parallel implementation,

leaving details to the reader.
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First as in the Hungarian algorithm, it is most efficient to keep track of the dual variables

by offsets. That is, the algorithm maintains the value of A. When a vertex v is added to Y, the

current values of A and y(v) are recorded as A°(v) and 9O(v), respectively. At any later time the

value of y(v) can be computed as y(v) + (A - AO(v)) X (if v E Vo then I else - 1). In a dual

adjustment the valbie A gets changed, but no work need be done for the vertices in Y.

Second, the algorithm maintains lists of edges that may be used in future Grow Steps. The

idea is similar to one proposed by Dial for Dijkstra'- algorithm ([Dia]; see also (G85], [W]). For

one processor the details are as follows. Each unmatched edge e with e0 but not el in Y has a

value A(e), such that if A reaches the value A(e) and el is still not in Y, then edge e has become

eligible and el can be added to F. The value A(e) is easily calculated when e0 is added to F, as

A(e) = A + c(e) + 1 - y(e). For each possible value A (0 < A < b) the algorithm maintains a list

L(A) containing all edges e with A(e) = A. In the Adjust Step the set W, is found by examining the

edges e on L(A) (for the current value of A). A dual adjustment is done by repeatedly increasing

A by one until L(A) contains an edge e with el V(.F). In the Grow Step each edge e incident to

Wn is added to the appropriate list L(A(e)). Note that A(e) is calculated after any relax operation,

and there is no need to add e if A(e) > b.

To implement this in parallel we allocate storage in "blocks" to allow edges on a list L(A) to

be scanned in parallel. Specifically a block consists of p + 1 consecutive words of memory. Define

s = rAVb. The algorithm allocates space for s + 1 + Lm/pJ blocks. The total space for this is O(m),

since sp _ m by assumption on the number of processors. Blocks are used as needed. The unused

blocks are consecutive in memory. The algorithm keeps a pointer to the first unused block so that

the next block can be allocated when needed.

The algorithm uses a system of lists L'(d), for 0 _< d < . Each list L'(d) consists of one or

more blocks. Each block stores k edges in its first k words, for some k < p; if k = p then the p+ 1"t

word of the block points to the next block of L'(d). If A is in the range is < A < (i + 1)s then for

0 < d < s, list L'(d) corresponds to the above list L(is + d); list L'(s) corresponds to the union of

all lists L(is + d), d > s. Since at any time a given edge is in at most one block, the number of

blocks used is as given above.

This data structure allows the edges of a list to be scanned in parallel. Specifically to scan the

edges in a block, processor i accesses the edge stored in the ith word of the block. Similarly edges

are added to a list in parallel by placing them in consecutive locations at the end of the last iblock.

If this last block does not have sufficient space a new block is allocated and added to the list.

Using sorting and parallel prefix computations as in Section 2, the tnjt. ui all AUju.t and

18



Grow Steps is given by (3.4).

The last detail concerns the processing when A takes on a value that is a multiple of s. Note

from the definition of the data structure that at this point all lists L'(d), 0 < d < s, must be

reinitialized, using edges currently on L'(s). By Lemma 3.2, this reinitialization occurs at most

[b/si :_ [AV] times. Using sorting and parallel prefix computations the total time for this is

O(v im(logp)/p), as desired.

3.3. The Augment Step.

This section describes the Augment Step of match. Consider the Augment Step for some value

A. Let A& denote the total augmenting path length in this Augment Step. The algorithm of this

section uses time

O((m/p + A&)logp). (3.5)

The bounds on I and A together with (3.5) imply that the total time for all Augment Steps is less

than the desired bound (3.2).

The Augment Step works on the residual graph of the graph of eligible edges. This directed

graph is acyclic, by Lemma 3.6. Thus it is easy to see that the Augment Step amounts to an

algorithm for the following problem: Given a directed acyclic graph D with distinguished vertices

s and t, find a maximal set A of vertex disjoint st-paths. This is the same problem as in Section

2, but now the graph is acyclic instead of layered. We present an algorithm for this problem.

For any graph D as in our problem, its reduction R is the subgraph induced by the vertices that

are on st-paths. Equivalently R is the maximal subgraph of D such that every vertex except t has

positive outdegree and every vertex except s has positive indegree. (Here indegree and outdegree

refer to degrees in R. Section 2 uses a weaker notion of reduction.) Note that for any vertex v of

R, a vt-path in R can be found by starting at v and repeatedly traversing an edge from the most

recently reached vertex. An sv-path can be found similarly.

As in Section 2, for a subgraph H, V (H) stands for V(H) - {s, t}.

The algorithm maintains the graph R as the reduction of D - V (A). As in the Augment Step

of Section 2, the algorithm repeatedly finds an st-path P, adds it to A, and updates R by deleting

X (P) and all vertices whose indegree or outdegree drops to zero. The difficulty in this approach is

that the vertex deletion time can be excessive. To see why, observe that the time to delete vertices

for P is at least (a constant times) the length of any path Q of deleted vertices. In Section 2, R
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is layered, so IQI <- IPI. This gives an acceptable bound on vertex deletion time. When R is not

layered, !Q1 can be larger than JPJ - we know no bound on IQI except n - 1. Thus the vertex

deletion time might exceed the desired time bound.

The algorithm overcomes this difficulty with the following approach, based on doubling. The

algorithm starts with a candidate path P. It determines the effect of adding P to A by tentatively

deleting V (P) and other vertices as appropriate. It checks if the time to do this is acceptable. If

not, it uses tentatively deleted edges to construct a new it-path, over twice as long as P. It repeats

the process for the new path. Eventually an acceptable path is found and added to A.

This strategy is implemented in the algorithm find-path below. find-path is called on a graph

1?, the current reduction of D - V (A). Its purpose is to add one path to A and update R. The

In and Out Steps below estimate the deletion time by tentatively deleting vertices from R. These

tentative deletions are either made permanent in the Double Step, or are ignored. Throughout this

section, "tentatively deleting" a vertex or edge means tentatively deleting it from R.

procedure find.path.

Initialize P to be an arbitrary st-path. Then repeat the following steps until the Double Step adds

the desired path to A.

In Step. Tentatively delete all edges directed from V (P). Then tentatively delete any vertex

whose indegree has dropped to zero; repeat this until every vertex of R - s has positive indegree.

Let pi be the total number of edges tentatively deleted in this step. Let P' be a longest path of

edges tentatively deleted in this step.

Out Step. Tentatively delete all edges directed to V (P). Then tentatively delete any vertex

whose outdegree has dropped to zero; repeat this until every vertex of R - t has positive outdegree.

Let p.o be the total number of edges tentatively deleted in this step. Let Po' be a longest path of

edges tentatively deleted in this step.

Double Step. Set p -- pi + u,. Let P' be the longer path of P', P.. If IP'I _ 2(IP + p/p)
then make the deletions of the In and Out Steps permanent, delete V (P), add P to A and halt.

Otherwise ignore those tentative deletions; let S be a path from s to the first vertex of P'; let T

be a path from the last vertex of P to t; let P be the st-path formed by S, P' and T. I

Tho correctness of find.path amounts to the fact that if the routine is called with R a nonempty

reduction graph, it eventually adds an st-path to A and halts. In the initialization, path P exists
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since R is a nonempty reduction graph. Similarly, in the Double Step paths S and T exist. Thus

every iteration of find.path constructs a longer st-path. Hence find.path eventually halts as desired.

Before analyzing the efficiency of this routine, let us observe that it is not difficult to implement

findpath. In particular in the In and Out Steps, paths P" and P.' are readily available. To see why,

consider for definiteness the Out Step and path P.. For a vertex v deleted in the Out Step, define

level(v) as follows. If v E V_ (P) then level(v) = 0; otherwise level(v) is the smallest value such

that for any edge vw, level(w) < level(v) - 1. Then the longest path of edges deleted in the Out

Step starting at v has length exactly level(v). Furthermore, such a longest path can start with any

edge vw where level(w) = level(v) - 1. Thus P" can be found if for each vertex v, the algorithm

records the edge that caused its outdegree to drop to zero.

Now we estimate the efficiency of find-path. Suppose find-path performs J iterations. For

1 < j < J, let P be the candidate path P in the jth iteration, and let Yj be the number of edges

tentatively deleted in the jth iteration. (Path P is constructed immediately before the jth iteration:

/uj is the value ju computed in the j"' iteration.) Thus Pj is the path that find-path adds to A and

#j is the number of edges actually deleted from R. Let Pj+l = P3 . We shall see that find-path

can be implemented so that the time for the jth iteration is

O((Aj /p + IPj+ 1)log p). (3.6)

This implies the following bound.

Lemma 3.9. The time for one execution of find.path is O((Mj/p + IPjl)logp).

Proof. From (3.6) it suffices to analyze the time for the first J - 1 iterations. From (3.6) this

time is O(logp) times Z'J-l j /p+ EJ-' lPj+l 1 . The first summation is at most a constant times

the second, since the Double Step implies that for j < J, IPj+iI > /j/p. The second summation is

less than 21PjI, since the Double Step implies that for j < J, IPj+ll > 21Pjl. I

The Augment Step works by repeatedly calling find.path until R becomes empty. Note that

when the tentative deletions become permanent in the Double Step, R becomes the new reduction

graph. Hence the entry condition for the next call to find-path is satisfied. A crucial part of the

algorithm that is still unspecified is how R is initialized when the Augment Step begins (i.e., before

the first call to findpath). Excluding that, it is clear that the Augment Step works correctly. The

total time used is the sum of the bounds of Lemma 3.9, which equals (3.5).
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Now we describe how R is initialized when the Augment Step begins. The first Augment Step

of match is simple: There are no matched edges, whence R is the residual graph of the eligible

edges. For an Augment Step after the first, the following routine is used. In addition to finding R

it constructs a path P to be used as the first candidate path in find.path. Hence the routine ends

by skipping the initialization of find.path and going directly to the In Step of find..path.

procedure find-RP.

R Step. Let F be the forest of the preceding Relaxed Hungarian Search. Do a breadth-first

search of the eligible edges, as follows: Start the search from the free vertices of V, (not V0). Stop

the search upon reaching the first breadth-first level L that does not contain a vertex of Y. Set

V(R) to the vertices of F reached in the search. Construct E(R) from the eligible edges that join

vertices of R.

P Step. Let v be a vertex of Y in the level preceding L. Let S be the alternating path of Y from

a free vertex of V to v. Let T be the alternating path of the above breadth-first search, from v to

a free vertex of V1. Set P to be the st-path in R that corresponds to S followed by T. Go to the

In Step of find-path. I

Now we show that findRP is correct. Observe that the R Step constructs R correctly: When

the Relaxed Hungarian Search halts, as noted in Section 3.2, F contains all vertices that are on an

augmenting path of eligible edges. Hence F contains V(R). Thus a vertex is in R if and only if it

is joined to a free vertex of V by an alternating path of eligible edges containing only vertices of

.F. Such a vertex is reached by level L in the breadth-first search. This implies that R is initialized

correctly.

In the P Step it is clear that the constructed path P exists and is in R. Hence findRP is

correct.

The time for findRP is O((m/p + IPI) logp), since IPI _. ITI = ILl - 1. The first augmenting

path constructed by find-path will be at least as long as the path that it starts with, which is the

P constructed by findRP. Hence findRP runs within the desired bound (3.5).

It remains c, deqcribe the parallel implementation of find.path. It can be implemented so the

time for one execution is given by (3.6). As with the Relaxed Hungarian Search we leave most of

the implementation details to the reader. The algorithm uses techniques similar to the Augment

Step of Section 2. Tentative deletions are done using vertex and scan lists, and the paths S and T

are found by the greedy strategy. In the data structure, each vertex v of G stores eight quantities:
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its indegree and outdegree; a tentative indegree and tentative outdegree; a pointer to the undeleted

eligible unmatched edge that is first in its adjacency list (if any); a pointer to the vertex to which

it is matched (if any); if v is deleted in the In Step, a pointer to an edge directed to v in a longest

path of deleted edges to v; a similar pointer to an edge directed from v.

This completes the derivation of Theorem 1.1. |

4. Extensions.

This section first presents an efficient algorithm for shortest paths in a directed graph with

arbitrary integral edge lengths. Then it generalizes the assignment algorithm to the minimum cost

degree-constrained subgraph problem.

4.1. Optimum duals and shortest paths.

Some applications of matching require the optimum linear programming duals. We begin by

showing how such duals can be derived from r-optimal duals. Then, as an example, we st --w how

this gives an efficient shortest path algorithm.

Let G+ be G with an additional vertex s E V and an edge .9v for each v E V1. Extend the

given cost function c to G+ by defining c(sv) as an Lrbitrary integer; the cost function used by

the main routine of our algorithm extends to G+ by its definition, T = (r + n + 1)c. To specify a

cost function on G+ we write G+; c or G+;E. Let M be a minimum perfect matching on G; for

vertex v let V' denote its mate, i.e., vv' E M. For v E V0 let M, be a minimum perfect matching

on G+ - v; c. (Such a matching exists, e.g., M - vv' + sv'.) Optimum linear programming duals

are given by

y(v) = if v E V0 then - c(M,,) else c(vv') - y(v').

(This can be proved by an argument similar to the algorithm given below. Alternatively see [G87]

for a proof from first principles.)

Recall the ordinary Hungarian search described in Section 3.2. Suppose such a search is done

on G+;E, with matching M. It halts with a tree T of eligible edges, rooted at s. The construction

of G+ implies T is a spanning trr. For any v .. ,, enting along the sv-path in T gives an

r-optimal matching N. on G+ - v; Z. N, is a minimum perfect matching on G+ - v; c. This follows
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from Lemma 3.1, since G+ - v and G have the same number of vertices. Hence N,, qualifies as the

above M,,.

This implies the following procedure to find optimum linear programming duals. Given is the

output 3,f our matching algorithm, i.e., an r-optimal matching on G; F with matching M and dual

function y. Form G+;F, defining c(sv) = [y(v)/(r + n + 1)1 for each v E V. Set y(s) ,- 0 to

get r-feasible duals. Do an ordinary Hungarian search to construct a spanning tree T of eligible

edges rooted at s. For a vertex v E V0, let P denote its path to the root in T. Compute v's linear

programming dial as c(M) + c(P n M) - c(P - M). Compute the dual of a vertex of V using the

above formula.

This algorithm can be implemented in time O((m/p + n)logp). The Hungarian search is

implemented as in match. Note that the definition of c(sv) ensures A < n. The duals are found by

a depth-first traversal of T using one processor.

Corollary 4.1. Optimum linear programming duals on a bipartite graph can be found in the

bound of Theorem 1.1. I

One application of these duals is to solve a shortest path problem.

Theorem 4.1. The single-source shortest path problem on a directed graph n vertices. m edges.

and arbitrary integral edge lengths can be solved in the bound of Theorem 1.1.

Proof. This problem can be solved by finding optimum linear programming duals for a bipartite

graph whose costs are the edge lengths, and then running Dijkstra's algorithm [G85]. The latter

can be implemented in time O((m/p + n)logNlogp) using the scaling algorithm of [G85j. I

4.2. Degree-constrained subgraphs.

This section presents our algorithm for finding a minimum perfect DCS. The algorithm gener-

alizes the matching algorithm of Section 3. Here we concentrate only on the aspects of the algorithm

that are new. The analysis uses the same sequence of lemmas as Section 3. Most of the proofs here

give only the facts needed to extend the argument of Section 3. The section also discusses several

other DCS algorithms. Recall that the function u specifies the degree constraints; we denote a DCS

by D, and the function d specifies the degree of a vertex in D.
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D.f-ine a relaxation function to be a function p : V --+ N (for N the nonnegative integers)

that has p(v) = 0 for each v E V1. (The intent is that p(v) equals the total amount that y(v)

has decreased in relax operations.) Note that in expressions such as p(D) a vertex v contributes

p(v)d(v).

An r-feasible DCS consists of a degree-constrained subgraph D, a nonnegative integer r, a dual

function y and a relaxation function p such that

y(e) :5 c(e) + 1, e V D; (4.1a)

y(e) >_ c(e) - p(e), e E D; (4.1b)

p(D) < r. (4.1c)

An r-optimal DCSis a perfect DCS that is r-feasible.

Lemma 4.1. If some integer larger than r + n divides each cost c(e) evenly, then any r-optimal

DCS is a minimum perfect DCS.

Proof. Use the characterization that a perfect DCS D has minimum cost if and only if any

alternating cycle C has c(C n D) < c(C - D). I

The algorithm is again stated using the integer parameters r, b = 3r + 5U and g. We eventually

choose r,b = E(U), g = S(log U).

The main routine and the scale.match routine work exactly as in matching. The desired time

bound for the algorithm follows if each scale runs in time

O((V/-M/p + U log 2 U) logp). (4.2)

Let LL be the r-optimal matching of the previous scale. (For the first scale, D_ is any perfect

DCS.) The costs input to match have these properties:

(a) Any edge not in D- costs at least -1.

(b) Any subset of E(D_ ) costs at most 2r + 3U.

The proof of (b) uses the nonnegativity of p.

In the match routine, edge e is eligible if equality holds in (4.la) (for e V D) or (4.1b) (for e E D).

The match routine differs from the one in Section 3 in two respects: The first is initialization. Each

relaxation amount p(v) is set to 0. Further, the DCS D is initialized to {ejc(e) < -1).
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The second difference is the Augment Step. Define an ap-set to be a set of edge-disjoint

augmenting paths of eligible edges, such that any vertex v is an end of at most u(v) - d(v) paths.

(In a multigraph, "edge-disjoint" means a given copy of an edge is in at most one path.) The

Augment Step finds a maxim&-I ap-set and augments the DCS along each path. Unlike Section 3,

no duals are changed after an augment.

The properties of the Search and Augment Steps are similar to Section 3, with these changes:

The definition of f is changed to the deficiency of the DCS, i.e.,

f =u(Vo) - d(Vo).

In addition to relation (3.3), any free vertex v E V has p(v) = 0 (it is never relaxed).

The correctness of match follows as in Section 3, using these observations to show r-feasibility:

The initialization of D guarantees (4.1a); also the initial D is included in Q by property (a), so

it satisfies the degree constraints. Finally, the Augment Step does not increase p(D), since a free

vertex v has p(v) = 0.

The analysis of the efficiency of match follows Section 3:

Lemma 4.2. At any time during match, fA < b.

Proof. Consider the expression Y = y(D_ - D) - y(D - DL). |

Lemma 4.3. 1 < 2vb + 1.

Proof. In the Augment Step the edges on an augmenting path become ineligible, by the definition

of "eligible" and the nonnegativity of p. This implies that any Hungarian search does a dual

adjustment. I

Lemma 4.4. -uAi _ b+ blogU. U

Lemma4.5. A<U+b+blogU.

Proof. By the argument of Lemma 3.5 and the nonnegativity of p, E=l A, _ A+c(Du)-c(Do).

The initialization of match shows that an edge in DU - D0 costs at least -1. So Lemma 4.4 implies

the desired bound. I

Now we turn to the Relaxed Hungarian Search. It differs from Section 3 as a consequence of

the fact that an edge of D need not be eligible. Hence the search forest Y is grown edge-by-edge,
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rather than in pairs of unmatched and matched edges. Thus the dual adjustment quantity is defined

as

6 = min~c(e) + 1 - ye e f D, eo E F, ei f 7} (4.3)
UJ(e) - c(e) + p(e)l ED, CO V, el E7.(

To relax a set of nonfree vertices S C V means to decrease y(v) by 1 and increase p(v) by

1, for each v E S. This operation makes any non-D-edge that is incident to S ineligible. It

does not change the eligibility of any D-edge. Concerning r-feasibility, a relax operation preserves

(4.1a)-(4.1b). Concerning (4.1c), it increases p(D) by u(S).

The Relaxed Hungarian Search works as follows. It initializes the search forest F to contain

the free vertices of V0 . Then it repeats the following steps until the Adjust Step halts with F as

desired.

Adjust St,.p. Set W1 -- {elj some eligible edge e D has eo E F, el F),

WO ,- {eol some eligible edge e E D has el E W1, eo V F), W2 - {eol some eligible edge e E

D has el E 7, eo F}. If W1 U W2 = 0 and T- contains a free vertex of V, halt. If W U W2 = 0

and F does not contain a free vertex of V1, do a dual adjustment and repeat this step.

Grow Step. For each vertex w E W1 U W2, add an appropriate eligible edge vw (v E F) to F;

then do the same for each u; E Wo. If u(Wo U W2 ) < f/g then relax W0 U W2 . I

This routine works analogously to the one in Section 3. Note that after the Grow Step adds

edges, an eligible edge with exactly one vertex in F is either a non-D-edge or is incident to W0 U 14'2.

If a relax operation is done, it makes the non-D-edges incident to W U W2 ineligible. Hence the

next Adjust Step halts or does a dual adjustment.

As in Section 3 we will choose parameter r as an upper bound to p(D). The correctness of the

Relaxed Hungarian Search is proved as in Section 3.

Now we establish the two properties needed by the Augment Step. The first is that F contains

all vertices that are on an augmenting path of eligible edges. When the search halts an eligible

edge e with exactly one vertex in Y is either a D-edge with eo E 7 or a non-D-edge with el E r.

Since an augmenting path starts at a vertex of Vo(.F) and is alternating, it cannot leave " on such

an edge.

The second property is acyclicity:
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Lemma 4.6. In match there is never an alternating cycle of eligible edges.

Proof. Consider an alternating cycle of eligible edges C. C does not exist after the initialization

of match, since every D-edge is ineligible. C is not created by an Augment Step or relax operation,

since neither creates an eligible edge. It remains only to show that C is not created by a dual

adjustment.

A dual adjustment can create an eligible edge e that has exactly one of its vertices in Y.

Suppose C contains such an e. Let f be the first edge after e in C with exactly one vertex in T.

The two possibilities for e are e f D with e0 E ., or e E D with ei E -F. In either case since C is

alternating, the two possibilities for f are f 0 D with fi E ', or f E D with fo E F. But such an

edge is ineligible after the dual adjustment. I

Now we analyze the efficiency of the Relaxed Hungarian Search.

Lemma 4.7. H = O(b + gU log U).

Proof. The only change in the argument is the definition of possibility (i) . It becomes: (i) The

iteration increases u(Vo(.)) by at least f/g. This occurs at most gU/f times in a given search. I

Lemma 4.8. At any time, p(D) : (4blogU)/g.

Proof. A relax operation increases p(D) by at most ffg. I

The rest of the development - choosing parameters, implementing of the Relaxed Hungarian

Search, the Augment Step and its analysis - is entirely analogous to that in Section 3.

The following result is derived by proceeding as in Section 3.

Theorem 4.2. A minimum perfect degree-constrained subgraph on a bipartite multigraph can

be found in time O(V/Umlog(nN)(logp)/p) and space O(m), for p 5 m/(v/"Ulog 2n). I

Now consider the general minimum cost degree-constrained subgraph problem on a bipartite

multigraph G. Each vertex v has given degree bounds 1(v) and u(v). Also given are bounds on

the cardinality of the solution, L sad H. We seek a degree-constrained subgraph (i.e., for each

vertex v, t(v) < d(v) 5 u(v)) that has minimum cost subject to the restriction that it contains

between L and H edges (inclusive). Note that special cases of this problem include minimum cost
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matching (t = 0, u = 1, L = 0, H = n), minimum cost cardinality-k matching (change L and H to

k), minimum cost maximum cardinality matching, and similar DCS problems.

It is straightforward to reduce this general problem on a multigraph G to a minimum perfect

DCS problem on a multigraph G*. For i = 0,1, define i' = I - i and add a vertex si to V. For

each v E Vi, -si,, add edge siv with multiplicity u(v)-t(v) and cost zero. Also add edige 3os with

multiplicity H - L and cost zero. Set u(s,) = u(V, - si,) - L. It is easy to see .hat a minimum

perfect DCS on G* is a solution to the general problem. This gives the following result. Define U

as the sum of the upper bounds of the given multigraph G.

Corollary 4.2. The general minimum cost degree-constrained subgraph problem on a bipartite

multigraph can be solved in time O(VUmlog(nN)(Iogp)/p) and space O(m), for

p_ m/(v-Ulog 2n). I
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